Time-lapse photography

Time-lapse photography is a technique whereby the frequency at which film frames are captured (the frame rate) is much lower than that used to view the sequence. When played at normal speed, time appears to be moving faster and thus lapsing. For example, an image of a scene may be captured once every second, then played back at 30 frames per second; the result is an apparent 30 times speed increase. In a similar manner, film can also be played at a much lower rate than it was captured at, slowing down fast action, as slow motion or high-speed photography.
Processes that would normally appear subtle to the human eye, e.g. the motion of the sun and stars in the sky or plant growth, become very pronounced. Time-lapse is the extreme version of the cinematography technique of undercranking. Stop motionanimation is a comparable technique; a subject that does not actually move, such as a puppet, can repeatedly be moved manually by a small distance and photographed; the photographs can be played back as a film, showing the subject appearing to move.

History

Some classic subjects of timelapse photography include:
  • Landscapes and celestial motion
  • plants growing and flowers opening
  • fruit rotting and expiring
  • evolution of a construction project
  • people in the city
The technique has been used to photograph crowds, traffic, and even television. The effect of photographing a subject that changes imperceptibly slowly, creates a smooth impression of motion. A subject that changes quickly is transformed into an onslaught of activity.
The first[citation needed] use of time-lapse photography in a feature film was in Georges Méliès' motion picture Carrefour De L'Opera (1897).
F. Percy Smith pioneered[citation needed] the use of time-lapse in nature photography with his 1910 film The Birth of a Flower.
The first use of Lapse-Time to record the movement of flowers took place in Yosemite in late 1911–1912 by Arthur C. Pillsbury, who built a special camera for this purpose and recorded the movements of flowers through their life cycle.[citation needed]Pillsbury owned the Studio of the Three Arrows in the Valley and applied the technique to solving the problem of ensuring the survival of the rapidly shrinking varieties in the meadows. The United States Cavalry, then in charge of Yosemite, were mowing the meadows to produce fodder for their horses.
Pillsbury showed his first film to Superintendents for the National Parks during a conference held for them in Yosemite from October 14–16, 1912. The result was a unanimous agreement by the Superintendents to cease cutting the meadows and begin preservation. Pillsbury made lapse-time movies for 500 of the 1,500 varieties of wildflowers in Yosemite over the next years.
His films were shown during his lectures, which were scheduled first at garden clubs around California and then at most of the major universities across the country. Pillsbury also showed his films and lectured to town hall forums and the National Geographic Society.
In 1926 he was asked to present both his lapse-time motion pictures and his newly invented microscopic film to President Calvin Coolidge at a dinner given on March 15 in the President's honor at the Willard Hotel in Washington DC. Pillsbury had been invited to present the films by Secretary of the Interior Herbert Work.
The use of photography in this form to obtain the preservation of natural resources was a first and followed his use of film to make the first recorded nature movie, shown to tourists in Yosemite in the spring of 1909.
Time-lapse photography of biological phenomena was pioneered by Jean Comandon[2][3] in collaboration with Pathé Frères from 1909, by F. Percy Smith in 1910 and Roman Vishniac from 1915 to 1918. Time-lapse photography was further pioneered in the 1920s via a series of feature films called Bergfilme (Mountain films) by Arnold Fanck, including Das Wolkenphänomen in Maloja (1924) and The Holy Mountain (1926).
From 1929 to 1931, R. R. Rife astonished journalists with early demonstrations of high magnification time-lapse cine-micrography[4][5] but no filmmaker can be credited for popularizing time-lapse more[citation needed] than Dr. John Ott, whose life-work is documented in the DVD-film Exploring the Spectrum.
Ott's initial "day-job" career was that of a banker, with time-lapse movie photography, mostly of plants, initially just a hobby. Starting in the 1930s, Ott bought and built more and more time-lapse equipment, eventually building a large greenhouse full of plants, cameras, and even self-built automated electric motion control systems for moving the cameras to follow the growth of plants as they developed. He time-lapsed his entire greenhouse of plants and cameras as they worked – a virtual symphony of time-lapse movement. His work was featured on a late 1950s episode of the request TV show, You Asked For It.
Ott discovered that the movement of plants could be manipulated by varying the amount of water the plants were given, and varying the color-temperature of the lights in the studio. Some colors caused the plants to flower, and other colors caused the plants to bear fruit. Ott discovered ways to change the sex of plants merely by varying the light source color-temperature.
By using these techniques, Ott time-lapse animated plants "dancing" up and down in synch to pre-recorded music tracks.
His cinematography of flowers blooming in such classic documentaries as Walt Disney's Secrets of Life (1956), pioneered the modern use of time-lapse on film and television.[citation needed] Ott wrote several books on the history of his time-lapse adventures, My Ivory Cellar (1958), Health and Light (1979), and the film documentary Exploring the Spectrum (DVD 2008).
The Oxford Scientific Film Institute in OxfordUnited Kingdom specializes in time-lapse and slow-motion systems, and has developed camera systems that can go into (and move through) small places.[citation needed] Their footage has appeared in TV documentaries and movies.
PBS's NOVA series aired a full episode on time-lapse (and slow motion) photography and systems in 1981 titled Moving Still. Highlights of Oxford's work are slow-motion shots of a dog shaking water off himself, with close ups of drops knocking a bee off a flower, as well as time-lapse of the decay of a dead mouse.
The first major usage of time-lapse in a feature film was Koyaanisqatsi (1983).[citation needed] The non-narrative film, directed by Godfrey Reggio, contained time-lapse of clouds, crowds, and cities filmed by cinematographer Ron Fricke. Years later, Ron Fricke produced a solo project called Chronos shot on IMAX cameras, which is still frequently played on Discovery HD. Fricke used the technique extensively in the documentary Baraka (1992) which he photographed on Todd-AO (70 mm) film. Recent films made entirely in time-lapse photography include Nate North's film, Silicon Valley Timelapse, which holds the distinction of being the first feature-length film shot almost entirely in 3 frame high dynamic range, as well as artist Peter Bo Rappmund's three feature-length documentaries, Psychohydrography (2010), Tectonics (2012), and Topophilia (2015).
Countless other films, commercials, TV shows and presentations have included time-lapse.
For example, Peter Greenaway's film A Zed & Two Noughts featured a sub-plot involving time-lapse photography of decomposing animals and included a composition called "Time-lapse" written for the film by Michael Nyman. More recently, Adam Zoghlin's time-lapse cinematography was featured in the CBS television series Early Edition, depicting the adventures of a character that receives tomorrow's newspaper today. David Attenborough's 1995 series, The Private Life of Plants, also utilised the technique extensively.


How time-lapse works

Film is often projected at 24 frame/s, meaning 24 images appear on the screen every second. Under normal circumstances, a film camera will record images at 24 frame/s. Since the projection speed and the recording speed are the same, t
Even if the film camera is set to record at a slower speed, it will still be projected at 24 frame/s. Thus the image on screen will appear to move faster.
Time-lapse undercranked timeline.svg
The change in speed of the onscreen image can be calculated by dividing the projection speed by the camera speed.
So a film recorded at 12 frames per second will appear to move twice as fast. Shooting at camera speeds between 8 and 22 frames per second usually falls into the undercranked fast motion category, with images shot at slower speeds more closely falling into the realm of time-lapse, although these distinctions of terminology have not been entirely established in all movie production circles.
The same principles apply to video and other digital photography techniques. However, until very recently[when?], video cameras have not been capable of recording at variable frame rates.
Time-lapse can be achieved with some normal movie cameras by simply shooting individual frames manually. But greater accuracy in time-increments and consistency in exposure rates of successive frames are better achieved through a device that connects to the camera's shutter system (camera design permitting) called an intervalometer. The intervalometer regulates the motion of the camera according to a specific interval of time between frames. Today, many consumer grade digital cameras, including even some point-and-shoot cameras have hardware or software intervalometers available. Some intervalometers can be connected to motion control systems that move the camera on any number of axes as the time-lapse photography is achieved, creating tilts, pans, tracks, and trucking shots when the movie is played at normal frame rate. Ron Fricke is the primary developer of such systems, which can be seen in his short film Chronos (1985) and his feature films Baraka (1992, released to video in 2001) and Samsara (2011).

Comments

Popular posts from this blog

Indonesian transwoman Dinda Syarif wins best national costume at Miss International Queen

The "Enchantment" of Jade Rasif, sexy DJ & has a fugitive father of the country.

The Story of FAHRENHEIT